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Software Defined Networking enables telecom. operators to offer specialist data services. Computing
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Computation extends beyond the Data Centre ... enabling additional capability & revenue
streams. Merging of Data Centre & Telecom. functionality

The “Mobile” Edge
(5G/6G and THz)
5G/6G: “Internet of Functions”

Autonomics & Edge Computing

Adapt execution of applications Autonomic computing is rooted
across the loT to Cloud in the use of feedback control

Use the MAPE-architecture from Equivalent to adapting interactions
autonomic self-management and behaviours of multiple controllers
Level of access can vary across Triggers

different layers of the practical

Infrastructure

Control actions

Strategies

Increasing availability of user
owned resources (e.g. home
hubs, streaming “box”, games
machines)

Monitoring
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Autonomics at the edge: resource orchestration for edge native applications,
1. Petri, O. Rana, L. Bittencourt, D. Balouek-Thomert and M. Parashar.
IEEE Internet Computing 25 (4), pp. 21-29, 2021. Dol: 10.1109/MIC.2020.3039551




oud Orchestration

Dynamically determines the placement and
scheduling of user applications to:
« improve utilisation of edge resources; SO
* meet overall application execution ,nodel

constraints such as deadline, network Edge layer ——

latency and security. - ALt

Pil H""’ E
) o /node3 4
Supports: = Orchestrator [ ]
» schedule tasks on locally available edge | P isssss
e —»
resource(s) or forward tasks to a cloud P4 dadnan? — =
S rt Ro

» The forwarding process is based on Rasberry Fis

properties and security credentials of (— —

resources
+ aggregate tasks prior to forwarding

these to a cloud system; FFC nodes
+ disaggregate tasks prior to forwarding N

these to edge resources. User tasks can be “tagged” —

Using tags as a basis for scheduling

A. Singh, N. Auluck, O. Rana, A. Jones and S. Nepal, “Scheduling real time security aware tasks in fog
networks”. IEEE Transactions on Services Computing 14(6), pp.1981-1994, 2021: Dol: 10.1109/TSC.2019.2914649
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Table II: Job Information.
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Task Tvpe
Cold storage room || 30kWh [ 180 [ Possible | Twice a day [ Between (0:00-23:45) |
Lighting system ][ 25 W/per tube | 60 [ Possible | Twice aday | Between (0:00-23:45) |




H HH physical underlay consists of five switches: Huawei S5720-
Edge & I ntra nSIt Ca pa bl I Ity 32C-HI-24S-AC, H3C S5560-30S-El, Ruijie RG-5750C-

(A| to optimise infrastructure & p|acement) 28Gt4XS-H, CISCO 3750X-24T, and Centec aSW1100-
48T4X. It also has five servers with i7-8700 CPU and 16GB

RAM, & Raspberry Pl with 1.2GHz CPU and 1GB RAM.
Open vSwitch nodes emulated using Mininet.

“cloudlets”
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(a) The underlay and overlay of the test-bed
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(b) The physical deployment (c) The raspberry pi

Qin, Yugen, Xia, Qiufen, Xu, Zichuan, Zhou, Pan, Galis, Alex, Rana, o the hardvare switehes
Omer, Ren, Jiankang and Wu, Guowei, “Enabling multicast slices in !
I edge networks”. IEEE Internet of Things 7 (9) , 2020, pp. 8485-8501. l
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S across Cloud + Fog resources

* Divide workflow into Virtual Network Functions (VNF) - identify placement
of VNFs on “Cloudlets” (Edge/In-Network hosted)

. e L. Route traffic of a particular multi-cast
¢ Metrics/Optimisation objectives: request to each d?astination D i

- Minimise overall cost of enactment » By chaining existing or newly

- Achieve end-to-end delay target instantiated VNF instances (across
. . . . different cloudlets),
- Meet security constraints associated with , Minimising operational costs &

meeting end-to-end-delay

. Dievitnation2

Diestination3

Firewall Diesiination

Di Z. Xu, Y. Zhang, W. Liang, Q. Xia, O. Rana, A. Galis, G. Wu and P. Zhou, “NFV-enabled multicasting in
clc mobile edge clouds with resource sharing”. Proc. 48th International Conference on Parallel Processing
(ICPP), Kyoto, Japan, 5-8 August 2019. ACM Press.




Three themes ...

How do we partition machine learning algorithms across
Edge-Network-Cloud resources?
What should run where (privacy, capacity, resilience).

Can machine learning algorithms be adapted based on
the characteristics of devices on which they are
hosted? What does this mean for stability/convergence
vs. performance?

How can user owned resources be more effectively
used? How are resource characteristics taken into
consideration?

The vision of a social cloud

* Definition: (based on Chard et al. 2011)

“Social Clouds are a scalable, dynamic and user-centric resource sharing
framework in which computational resources, services and information are
shared amongst members on the premise of the relationships encoded in a

social net\l

&

/

Social Clouds enable the sharing of (heterogeneous) resources in a framework
I where the social structures infer an implicit level of trust

10



Social Cloud:

building on existing Social Network Platforms

Resources are idle 40-95%

3B Users v
<
m)

On average 190

friends Users contribute to “good” causes
e RTAE
o \{’;,
\
s
o
!"'f__'
| SOCIAL

CLOUD

Ubiquitous: Facebook ~ 3B users (Q4, 2021)
Some represent “trusted” relationships
Have notions of pre-existent trust fabric inherently interwoven into the network structure
Many applications now use social networks as a platform for:

Authentication e.g. Facebook Connect

Online Presence e.g. fb.com/your_page, Google Places (API)
L Application Portals e.g. progress thru processors, ASPEN and PolarGrid project
11

Kyle Chard, Simon Caton, Omer F. Rana, Kris Bubendorfer:

“Social Clouds: A Retrospective”, IEEE Cloud Computing 2(6): 30-40 (2015)

Name Resource Use of social network Social K All ion
type integration

Social Compute Cloud* Compute Authentication and social- | Facebook APl integrated | Preference

graph extraction with the clearinghouse matching

through the Django
Secial Auth plugin

Social Storage Cloud* Storage Authentication, application | Integrated Facebook Economic (posted

interface, and social-graph | application price/auction)

extraction
Social Content Delivery Storage Authentication and social- | Facebook APl and Social network
Network (S-CDNj* graph extraction coauthorship network analysis
F2Box (FriendBax) Storage Authentication, application | Integrated Facebook Equal allocation

interface, and social-graph | application across friends’

extraction resources
Subdivision Social Cloud Compute Authentication and social- | Integrated Facebook Economic

graph extraction application {bartering)
SocialCloud MNone Social-graph extraction MNone Scheduling-based

model

Cycle Sharing in Secial Compute Social-graph extraction, Facebook API Social postingy
Networks (C55N) social network constructs

10 transport messages
Multi-community-cloud Compute Collaboration across None Social network
collaboration (MC¥ community clouds with analysis

social networks
Community clouds and Compute Ad hoc extension None scheduling-
Community Networks t0 existing network based technigLies
Testbed for the Future topologies and community

‘ Internet (CONFINE] project ecanomies ‘
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Incentives play a crucial role ...

Subscribing

What are users’

Active user
participation

Incentives to provide

Adherence to
(informal)

Agreements

Adherence to trading

incentives to join resources agreements
asc?
Disincentives to free-ride® Avoiding “anti-social” and
- malicious behavior
L 1: Hardin 1968

Y

Mechanism Design

Mechanisms are able to provide incentives:
(i) Monetary: cost/service or cost/unit time;

. (if) Non-Monetary: badges, Top 10 list, reciprocal.
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Platform Architecture

Social Cloud Platform

Resource Allocation
Social

Economic
| Protocols |

Preference
Protocols

Resource Endowment

| Protocols |

Policies/Preferences

191depy |E21UY3]-01905

Social
Network

Social
Network

Social
Network

Resource Middleware Fabric




Social Cloud Platform
Social
Network

Social Marketplace
Economic Social
a Protocols Protocols
Preference
Platform Manager

Policies/Preferences 7

Architecture Components

Social
Network

Social
Network

erdepy |ealuyosy-omos ||

Social Marketplace——
— Matching supply with demand

— Protocols for resource allocation,
rules of exchange, information store/registr,

Platform Manager

— Overall system coordination

Socio-Technical Adapter

— Identify verification (e.g. auth

zation token)
— Connect to various “type

Resource Fabrics

— Virtualisation & Sandboxing mechanism

of social networks (DBLP, Facebook etc)

— Integration with Globus end points, Docker/OpenWhisk, Seattle VM,
etc

A 4
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Social Cloud: Platform for Data Storage (Demonstrator)

* Simple Storage Service Implemented as a Facebook application
* Use Case: a back up facility

Service Interaction (as consumer)\

Market Infrastructure Resource Fabrics )

f”
facebook

Auctioneer /
Posted Price
Index

Banking Contract
Service Management
b
Monitoring
L “—’/

Provider admin Agreement

Kyle Chard, Kris Bubendorfer, Simon Caton, Omer F. Rana, “Social Cloud Computing: A Vision for Socially
Motivated Resource Sharing”. IEEE Transactions on Services Computing 5(4): 551-563 (2012)

16



fal:e bﬂok Home Profile Friends Inbox

SodalCloud

Auction Created

Current Auctions
Refresh Auction List

Auction ID Storage Availability Auction Agreement Allocated Credits
AMID4 100 99 Active

AMID3 100 99 Done Complete Kyle Chard 11
Create a new storage auction
You have 100000000 credits remaining

Create Auction Description

Maximum Credits: 100

Availability: -99 %

Duration: 10 Days

Storage: 100 KB «

Penalty: 0 %

Create Auction

K3 Applications | @) & [ ] € B8 o Bookmark SocaiCloud

Home Storage Summary Register Storage Service Posted Price Marketplace

Dynamic Marketplace

17

Posted Price Scalability

number of matches

discovered in ~ 2 seconds

* Varying the size of the MDS (directory service) and

35
«i=2000
3 —4—1600
25 1800
= o “34=1400
g —e—1200
= 18
a=t1000
17 o= 800
05 =600
0 == 400
20 40 60 80 100 120 140 160 180 200  ===200
L Number of entries returned by select

* With a size of 2000 sites/nodes, 100 matches can be

18




Auction Scalability

19

* 500 Auctions and the worst case scenario:
— all auctions run concurrently

* 50 bidders can complete 65 auctions per minute

* Under our assumptions this is already enough for a large
social network

200

180 @

160 \\

140 N

120 ~_

199 \
80 —
60

40
20

Auctions per minute

10 20 30 40 50

Number of Bidders ‘

Social Clouds: types of data

20

(e.g. podcasts, blogs, photos, music, documents)

* User generated content may be:

— intermittent content often required at different
time intervals but not continuously;

— temporary content required for a short period of
time (e.g. processing memory for running an
experiment) and often only once;

— backup content required with the highest security
implications and privacy;

— working content that can be accessed in real time
and continuously.

4
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Processor Sharing — via extended Seattle VMs

Seattle is an open research and /~ Social Cloud Platform
educational testbed that utilizes ” Social Netwark ) [ﬁ
computational resources %oy : qf.l
provided by end users on their t ; 8] ] Sharing p [e,f?rences
existing devices. Unlike most ] § f — v
other platforms, resources are ' ’ p Resource Request(s) &
not dedicated to the platform | ik aFad Consume
5 \ Resources
which allows a greater degree
of network diversity and realism
at the cost of programmability.
Seattle is designed to preserve —# B
user security ¥ R
T s = “. Provide Resources
. apird -

* Matching between users & owners O W b
* Seattle -- Open P2P platform Gompute-Resolrces

— Seattle “Clearing house” mechanism. 10 “vessels” (VMs) for each new install

— Node Manager: gatekeeper for resources deployed on every contributed

resource (credential checking for VM interaction)
— Host machine location (in a lookup service) + Public/Private keys generated
— Repy (Reduced Python for sandboxed environments)
Experience with Seattle: A Community Platform for Research and Education
L https://ssl.engineering.nyu.edu/papers/zhuang_seattle_gree 13.pdf A‘

Processor Sharing — via extended Seattle VMs

* |dentify list of donation nodes
* Filter list based on “friends list” for a particular user
* Match mechanism

— Select consumer preferences for each friend
— Select preferences for each friend for requesting user
* Extends Seattle’s implementation of (pseudo)

random allocation to reduce user/donation
permutations

Simon Caton, Christian Haas, Kyle Chard, Kris Bubendorfer, Omer F. Rana, A Social Compute Cloud:
Allocating and Sharing Infrastructure Resources via Social Networks. IEEE Transactions on Services
Computing 7(3): 359-372 (2014)

22
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Data “Followers” & “Survivability” dynamics

(The “Data Wildfire”)

Register interest in a data set

— Equivalent to “Like” P mon has run a new simulation
“ . torage sedn://uni-url.edu/simon/sim1
(Facebook) and “Favourite Server @SocialCloudProject
(Tw|tter) Allocation
Server

— Event generated on
subsequent update on a
data set

Enable popular data set to be '

propagated
— Equivalent to a “Share”
“ Data Followers: Data Followers:
(Facebook) and “Re- SocialCloudProject Colleagues
Tweet” (Twitter)
— Enables data sets with Resource Server: temporary storage at edge
community interest to resources (user owned)

become popular over time .
Allocation Server: overlay server to support

Can be useful as a basis to data storage — for replicas, cache & repository
support resource allocation

Data “Followers” & “Survivability” dynamics

(The “Data Wildfire”)

l] S-CDN

! 2 User Endpoint Dataset
j H Information Information

A . S 2 i
3) Trust Extraction H Replica Placement L) 6)

m T T 7

User data: username, first name, last name, email, registration data, last login.

SocialAuth: social network type. social network id, oauth token.

Endpoint data: id. owner, endpoint name.

Datasets: id, owner, dataset name, endpoint, relative path.

Dataset versioning: owner, date, type <"endpoint”, “registration”. “update”, “download™>
Dataset replicas: dataset id, owner, endpoint, relative path.

Download metrics: dataset id. downloader. download time.

Relationship metrics: owner, [ollower, score.

Social Adapters to identify “community” dynamics
Data set placement and resource allocation based on these properties (use of Globus

End points (https://www.globus.org/)— with Argonne National Lab.)

12



A Social Content Delivery Network for Scientific Cooperation

é) . Replica Placement:

C@ g @@3 Random

_f] *Node Degree:
S N T highest no. of edges

# party

*Community Node

g & Ty ] 3 Degree (highest
\@/ﬂ f%'\-[i\ /. degree within a

- @ community, i.e. no
[ ot S\ adjacent placement)
[l | «Clustering Coefficient
- Server (similar to highest

25

26

' Computation: Practice and Experience 29 (4), e3854. 10.1002/cpe.3854 .

betweenness scores)
Chard, Kyle, Caton, Simon, Kugler, Kai, Rana, Omer and Katz, Daniel
S. 2017. A social content delivery network for eScience. Concurrency and

I 26  Number of authors 604 435 1988 |

Scenario and Community Representation

(Trust “Boot strapping” problem)

Baseline Graph: DBLP publications graph
(Kyle): 3 degrees
— Nodes: authors, Edges: co-authorship of 1
or more papers

Double co-authorship: at least 2
publications
No. of Authors: < 6 authors on the paper

Trust: captured through prior collaborative
work

Would you trust your co-
authors to host your
data?

Graph Nodes Publications  Edges

Baseline 2335 1163 17,973 (b) Double Co-authorship {c) Number of Authors.
Double-author 811 881 5123

13



Results (60 repetitions) — miss/hit rate in caching
Double Coauthorship No. of Coauthors

~
=)

40 —=—Random
—=—Random

35 {——Node Degree ——Node Degree

-
S

—+— Community Node Degree —— Community Node Degree

w
S

w

=]

—— Clustering Coefficient —— Clustering Coefficient

N
a

IS

S

w
S

.
G
Replica Hit Rate (%)

Replica Hit Rate (%)
~
o

N
5]

10

|
|
|

1 2 3 4 5 6 7 8 9 10 123456.78910
Number of Replicas Number of Replicas

Kyle Chard, Simon Caton, Omer Rana and Dan Katz, A Social Content Delivery Network for Scientific
Cooperation: Vision, Design, and Architecture, 3rd Int. Workshop on Data Intensive Computation in the

' 27 Cloud (DataCloud), ACM/IEEE “SuperComputing” conference, Salt Lake City, Utah, November 11, 2012 l
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Data “Followers” & “Survivability” dynamics

(The “Data Wildfire”)

* Register interest in a data set

— Equivalent to “Like” (Facebook) and “Favourite”
(Twitter)

— Event generated on subsequent update on a data set
* Enable “interesting” data set to be propagated

— Equivalent to a “Share” (Facebook) and “Re-Tweet”
(Twitter)

— Enables data sets with community interest to become
popular over time

* Can be useful as a basis to support resource allocation

28
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Device Availability Profile: User Owned vs. Overlay

! ——Normal —>—Reduced
Zo0s Availability of user owned
= devices (Begole et al.)
®
o 06
2
&
o 04
A=
§ 02
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour
e
o R
- 5

Colour codes represent
Different time zones

Begole JB, Tang JC, Smith RB, Yankelovich N. Work rhythms: analyzing visualizations of awareness histories of

ACM, New Orleans, LA, 2002; 334-343
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Replica distribution:
Red endpoints contain > 5 replicas

Chard, Kyle, Caton, Simon, Kugler, Kai, Rana, Omer and Katz, Daniel
S. 2017. A social content delivery network for eScience. Concurrency and
Computation: Practice and Experience 29 (4), e3854. 10.1002/cpe.3854

Replica placement, taking
account of resource properties
and social relationships

distributed groups. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW), '

15



'SFC (w. Osama AlMurshed)

. Data flow from f! to 2 Allocate a Function

caching
B
content
End server
: By
o - \
User n = ] Clt;!
. device ) u
"I = sequance Fog Nod Fog Node Datacenter
e & O e e e e
J <+—up b dependenton a ams... [uffuufungon| e 0 e e e e e e e [...0
Response Time
(a) Examples of input-output data dependencies (b) SEC allocation processes in the Fog and Cloud

Objectives:
Minimise Completion time & Risk — given a number of available “locations”
Subject to a maximum number of replicas. Identify also “similarity” score for choosing locations

31

Parsl: Interactive parallel programming in Python
(from Dan Katz) -- http://parsl-project.org

Apps define opportunities for parallelism [pip install parsl |

* Python apps call Python functions
* Bash apps call external applications iy B

return 'Hello World!' ﬁ pgthon
print(hello().result())

Apps return “futures”: a proxy for a result
Hello world!

that might not yet be available
@bash_app

def echo_hello(stdout="echo-hello.stdout'):
return 'echo "Hello World!"'

Apps run concurrently respecting data
echo_hello().result() BASH

dependencies. Natural parallel
. with open('echo-hello.stdout', 'r*) as f:
programming! print(f.read())
Hello World!

Pars| Executor & Parsl apps

Replacing “Seattle” with Parsl/FuncX endpoints

THE UNIVERSITY OF

IL ILLINOIS NCSA CHICAGO Argonne’

NATIONAL LABORATORY




funcX: used alongside Parsl H e Ao S

I o
(from Dan Katz) rcaton | D

o . . . f(x), ... flx) gix)
Turn any machine into a function serving endpoint [1.23..n] : ) k(x)
Overcome heterogeneity in distributed infrastructure F==== g ===
5 EP(x) registry
Functions: - _—

- Register once & can associate a container for
encapsulation

- Authn/z (via Globus Auth) for user execution

- Add Globus group to a function to share it

Endpoints:

- Lightweight agent that can be deployed by users

- Abstracts underlying resource and elastically
scales to demand

Function - A snippet of Python code that performs an activity

Endpoint - A logical entity that represents a compute resource and can execute a
function

funcX service - A cloud-hosted service to register functions, invoke functions, and
retrieve results

THE UNIVERSITY OF

IL ILLINOIS NCSA CHICAGO Argonne'

NATIONAL LABORATORY

(@B BB o
lP Z
#Pars
\ (% s e IProductive parallel programming in Python|
B

T
) + Jupyter integration
Request 0
>
Response

User
Device

Partial Dec\smn-Makmg{

Fog Infrastructure

Redundant
Deployment

MapReduce

Cluster =
o Cloud Datacenter

Worker  Worker  Worker

¥

Understanding the replication “tunnel”
to support failure at the edge

Close alignment with function replication across
Edge and Cloud resources

34
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Mapper

‘ Monitoring

S

Winners

Reducer

i ' Nominees
( Nommeesq Nominees

'3 227 &2 mam

Mapper

Monitoring

E M~1\g wontoring
I((()) mu&\im -

=(t 2! . L. :(\)z
=

= S

Monitoring

Monitoring

Crle®

s
®
(‘@f)-@

The GNH uses
MapReduce to
identify
potential
locations

search space is
divided between
workers, i.e.,
Mappers.

N 4

FIGURE 5 Each Mapper has a group of locations to monitor, each group has its color (green, red and yellow). The final
Max-heap has a variety of node’s color, due to them coming from different Mappers

Mapper: Identify potential locations within their group of nodes -- keeps a local
record of the locations they monitor, and the records are results of monitoring
the computing resources and the network connections linking these locations

Reducer: receives the result from every Mapper, then concatenates them, then
applies a Max-heap push-pop function to each location in the Mappers’ result.
Decides optimal locations for redundant deplovment

35
65%
% 5.45% 0.15% 0.02% 0.06% 0.28% 0.51% 0.37% 0.46% 0.37% 1.37%
o
o - 0.00% 0.00% 0.64% | 25.64% 18.27% 8.89% 9.09% 4.36% 4.25% 4.25% 3.87% | 20.74%
) -
Version CPU Core(s) Memory Storage Network Interface Speed
RPi 3 Model A+ 1.4 GHz 4 256 MB 512 MB 8GB 16GB 32GB 300 Mbps
RPi 1 Model B 700 MHz 1 256 MB 512 MB 8GB 16GB 32GB 100 Mbps
RPi I Model B+ 700 MHz 1 256 MB 512 MB 8GB 16GB 32GB 100 Mbps
RPi 2 Model B 900 MHz 4 1 GB 8GB 16GB 32GB 100 Mbps
RPi 3 Model B 1.2 GHz 4 1GB 8GB 16GB 32GB 100 Mbps 300 Mbps
RPi 3 Model B+ 1.4 GHz 4 1GB 8GB 16GB 32GB 300 Mbps 1000 Mbps
RPi 4 Model B 1.5 GHz 4 1GB 2GB 4GB 8GB 16GB 32GB 300 Mbps 1000 Mbps
RPi Zero W 1 GHz 1 512 MB 8GB 16GB 32GB 300 Mbps
2 < ] a 8 3 S 2 = 2 B
a 3 & g g
'Variable Number/Rangs
Application requests 10,000,000
SEC length (1-20)
Location 100
FNs 80
VMs 20
FN’s Latency (1-50 ms) “Greedy Nominator Heuristic (GNH): Virtual Function
zg‘;fj;‘:“y (fgzgo ms) Placement on Fog Resources” Osama Almurshed, Omer Rana
FNIMTTR. Es s m':'f ) and Kyle Chard, Concurrency & Computation: Practice &
VM MTTF (30 - 300 ms) Experience, 2022
VM MTTR (2-10ms)
36
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In Conclusion

* Social Clouds provide an important user-driven
alternative to data-centre based Clouds

— Wouala networks, AmazingStore (China), etc

* |ssues of Trust, Reputation and Economic incentives
is key

— Include other factors: availability, reliability, uptime, power
usage, etc

— Traditionally captured through Service Level Agreements
* Current focus: Broker “emergence” in Social Clouds

— Identify dominating sets in a social graph

— Implementation using CometCloud

37
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