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Dynamic Networks

General Description:

Networks whose structure may change

Usually represented by a graph

Edges and/or nodes come and go

Dynamics and Control:

Active or Passive

Centralized or Distributed
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Programmable Matter

Geometry plays a big role.
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Two Models in this Talk

Distributed Computation and Reconfiguration

Static set of nodes, dynamic set of edges

Edge activations/deactivations

Transform the initial network Gs into a target network Gf from a
family of target networks

Exploit some good properties of Gf in order to more efficiently
solve a distributed task

The Complexity of Growing a Graph

Dynamic set of nodes and edges

Node generations and edge activations/deactivations

Construct an input graph G starting from graph G0 (graph with a
single node) via node generations and edge activations
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The First Model

Initial connected network Gs

Static set V of n nodes

Dynamic set E(i) of m active edges

Standard synchronous message passing model

Each node has a unique ID

Nodes can only compare unique IDs

Node u can activate an edge with node v if they
have a common neighbor

One edge between two nodes

15
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15

6 3
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The Problems

Problems:

Leader Election: Elect a unique leader

Token Dissemination: Each node has a unique piece of
information. Every piece of information has to be disseminated to
every node

Depth-d Tree: Transform the initial network into a tree of depth d
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The Clique Formation Strategy

Very simple strategy:

Initial Cycle network, target Star
network

Activate an edge with every distance
2 neighbor

Spanning clique, log n rounds

Eliminate extra edges

BUT

Activating and maintaining a
connection does not come for free
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The Measures

Measures:

Total Edge Activations: The number of edges activated by the
algorithm

Maximum Activated Edges: The maximum number of activated
edges by the algorithm per round

Maximum Activated Degree: The maximum degree of the network
based only on the activated edges by the algorithm
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Objective

Give (poly)log(n) time algorithms for the general task of transforming
any Gs into a Gf of diameter (poly)log(n), while minimizing the
edge-complexity, and solve leader election, depth-(poly)log(n) tree, and
token dissemination at the same time.
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Our Results

Algorithm Time Total Edge Activations Maximum Activated Edges Maximum Activated Degree

GraphToStar O(log n) O(n log n) O(n) O(n)
GraphToWreath O(log2 n) O(n log2 n) O(n) O(1)
GraphToThinWreath O(log2 n/ log logn) O(n log2 n) O(n) O(log2 n)

Table: Algorithms

Bounds Time Total Edge Activations Maximum Activated Edges Maximum Activated Degree

Centralized Lower Ω(log n) Ω(n) Ω(n/ log n)
Centralized Upper O(log n) Θ(n)
Distributed Lower O(log n) Ω(n log n)

Table: Bounds for Depth-d tree
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Introduction on the General Strategy

Nodes are partitioned into committees

Committees organized into gadget networks

Each node forms its own committee

Committees compete and merge

Final network has a single committee

Polylogarithmic running time

Time: phases*gadgetdiameter

u
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GraphToStar Algorithm

Gadget network: Star

TreeToStar subroutine

Transforms any initial oriented Tree graph
into a spanning Star graph in log n time

Activates an edge with grandparent

Deactivate an edge with parent

uuuuu
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Selection: Each committee leader u selects the neighboring
committee leader v with the highest UID, where UIDv > UIDu.
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High Level
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Partitioning: We can partition the graph into directed trees
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High Level
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Pulling: Each committee leader u activates an edge with the next
committee leader v.
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GraphToStar Proof Sketch

Theorem: For any initial connected graph Gs, the GraphToStar
algorithm solves the Depth-1 Tree problem in O(log n) time with at
most O(n log n) total edge activations and O(n) active edges per round

Correctness

Committees keep merging

Can’t get isolated indefinitely

Time Complexity

Committees “double” in size

Isolated

Edge Complexity

Very simple
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GraphToWreath Algorithm

Gadget network: Wreath

LineToCompleteBinaryTree subroutine

Transforms any initial oriented line into a
spanning Complete Binary Tree in log n
time

Activates an edge with grandparent

Deactivate an edge with parent

Stop when grandparent has two children
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Our Results

Algorithm Time Total Edge Activations Maximum Activated Edges Maximum Activated Degree

GraphToStar O(log n) O(n log n) O(n) O(n)
GraphToWreath O(log2 n) O(n log2 n) O(n) O(1)
GraphToThinWreath O(log2 n/ log logn) O(n log2 n) O(n) O(log2 n)

Table: Algorithms for Depth-d Tree

Bounds Time Total Edge Activations Maximum Activated Edges Maximum Activated Degree

Centralized Lower Ω(log n) Ω(n) Ω(n/ log n)
Centralized Upper O(log n) Θ(n)
Distributed Lower O(log n) Ω(n log n)

Table: Bounds for Depth-d Tree
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The Complexity of Growing a Graph

Motivation: Abstraction of networked systems which, starting
from a single entity, can grow into well-defined global networks
and structures

Not well studied apart from the Nubot model of Woods et al.
[WCG13], which is a geometric model
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Our Focus

Construct an input graph G starting from graph G0 (graph with a
single node) via node generations and edge activations

Active Dynamics and Distributed Control

BUT the centralized case is still unknown (and hard as it seems).
So we will focus on the centralized case for now.
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The Second Model

Initial graph G0

Node generation: In every round, each node u can generate(give
birth) another node v and activate edge uv

Edge activation: At the time of its birth, node v can activate
edges with nodes that are within its edge-activation distance d at
the time of its birth

Edge deletion. In every round, any node u can decide to delete
some of its incident edges
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An example

1 2

3
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8

9

a)1 → 2

b)1 → 4

c)1 → 6

d)1 → 8

e)1 → 9

f)1 → 3

g)1 → 5

h)1 → 7
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An example
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a)1 → 2

b)1 → 4

c)1 → 6
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An example

1 2

3

4

5

6

7

8

9

a)1 → 2

b)1 → 4

c)1 → 6

d)1 → 8
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An example
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a)1 → 2

b)1 → 6, 2 → 3, (1, 3)
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An example
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a)1 → 2

b)1 → 6, 2 → 3, (1, 3)

c)1 → 8, 2 → 9, (1, 9), 3 → 4, (1, 4), 6 → 5, (1, 5)
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An example

1 2
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8

9

a)1 → 2

b)1 → 6, 2 → 3, (1, 3)

c)1 → 8, 2 → 9, (1, 9), 3 → 4, (1, 4), 6 → 5, (1, 5)

d)1 → 7, del((3, 4), (2, 3), (5, 6), (2, 9))
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The Problem

Based on the previous example, we can see that there is a trade off
between time slots and excess edges

Construction Schedule Problem: Given an input graph G,
compute in polynomial time a construction schedule of length at
most k slots and with at most l excess edges, if it exists.

Zero Waste Construction Schedule Problem: Given a input
graph G, compute in polynomial time a construction schedule of
length at most k slots and l = 0 excess edges, if it exists.
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Edge Activation Distance

Theorem: For d = 1, we provide an algorithm computes in
polynomial time an optimal construction schedule with k slots for
any tree graph G.

Lemma: For d ≥ 4, a graph G = (V,E) with n nodes can be
generated with a construction schedule with log n slots and with
O(n) excess edges.

We will focus on d = 2 since its more natural and interesting
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Fundamental Properties and Lower Bounds

Properties:

The nodes generated in a time slot form an independent set in the
final graph.

The progenies of two non adjacent nodes are independent from
each other in the final graph.

Lower Bounds:

Chromatic Number χ(G)

Size of largest clique c
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Efficient Schedule for Trees

The Efficient Schedule for Trees algorithm computes, in
polynomial time, a construction schedule for any given tree graph
G with O(log2 n) slots and with O(n) excess edges.

Decomposition strategy where nodes are removed in phases until a
single node is present

The phases can be reversed using O(log2 n) slots and O(n) excess
edges
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Planar Graphs

The Planar Graph algorithm computes, in polynomial time, a
construction schedule for any given planar graph G with O(log n)
slots and with O(n log n) excess edges.

Compute a 5-coloring of the input planar graph

Construct the nodes of each color class one by one using a line
construction schedule for each color.

O(log n) slots for each color class and O(log n) excess edges for
each node.
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Zero Waste Construction Schedule Problem

Cop-win graphs: Undirected graph on which the pursuer (cop) can
always win a pursuit-evasion game against a robber.

A graph can be constructed with l = 0 iff it is a cop-win graph.

The Recognition of Cop-win Graphs algorithm can decide in
polynomial time, whether a given graph G is cop-win, and if so, it
also produces a construction schedule with n− 1 slots and l = 0
excess edges.

The Fast Cop-win algorithm computes in polynomial time a
construction schedule σ for any graph G = (V,E), where |V | = 2δ,
with log n slots and l = 0 excess edges, if and only if such a σ
exists for G.
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Zero Waste Construction Schedule Problem

Theorem: The decision version of the zero-waste construction schedule
problem is NP-complete.

The reduction is from the coloring problem.

Construct graph G′ by adding a clique of size n whose nodes
connect with every node in graph G.

Show that the construction schedule for G′ has κ(G′) slots such
that κ(G′) = χ(G) + n.
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Zero Waste Construction Schedule Problem

Theorem: Let ϵ > 0. If there exists a polynomial-time algorithm,
which, for every graph G, computes a n1−ϵ-approximate construction
schedule, then P=NP.

The reduction is from the coloring problem.

Construct graph G′. Show that computing an approximate
construction schedule for G′ also computes an approximate
solution for the chromatic number of G.
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Open Problems

Relationship to overlays (communication vs edges)

Randomized algorithms, anonymous entities, less local edge
activations, dynamic nodes

Improve upper and/or lower bounds for both models

Going back from networks to geometry (e.g., translating edge
complexity to local moves)

Distributed model for growing graphs
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Thank you!!!
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